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We present the first chiral-continuum extrapolated up, down, and strange quark spin contribution to the

proton spin using lattice QCD. For the connected contributions, we use 11 ensembles of 2þ 1þ 1-flavor of

highly improved staggered quarks (HISQ) generated by the MILC Collaboration. They cover four lattice

spacings, a ≈ f0.15; 0.12; 0.09; 0.06g fm, and three pionmasses,Mπ ≈ f315; 220; 135g MeV, ofwhich two

are at the physical pion mass. The disconnected strange calculations are done on seven of these ensembles,

covering the four lattice spacings but only one with the physical pion mass. The disconnected light quark

calculation was done on six ensembles at two values ofMπ ≈ f315; 220g MeV. High-statistics estimates on

each ensemble for all three quantities allow us to quantify systematic uncertainties and perform a simultaneous

chiral-continuum extrapolation in the lattice spacing and the light-quark mass. Our final results are

Δu≡ h1i
Δuþ ¼ 0.777ð25Þð30Þ, Δd≡ h1i

Δdþ ¼ −0.438ð18Þð30Þ, and Δs≡ h1i
Δsþ ¼ −0.053ð8Þ, adding

up to a total quark contribution to proton spin of
P

q¼u;d;sð
1

2
ΔqÞ ¼ 0.143ð31Þð36Þ. The second error is the

systematic uncertainty associated with the chiral-continuum extrapolation. These results are obtained without

model assumptions and are in good agreement with the recent COMPASS analysis 0.13 < 1

2
ΔΣ < 0.18 and

with the Δq obtained from various global analyses of polarized beam or target data.

DOI: 10.1103/PhysRevD.98.094512

I. INTRODUCTION

In 1987, the European Muon Collaboration measured the

spin asymmetry in polarized deep inelastic scattering and

presented the remarkable result that the sum of the spins of

the quarks contributes less than half of the total spin of the

proton [1]. This unexpected result was termed the “proton

spin crisis.” Lattice QCD can unravel the mystery of where

the proton gets its spin by measuring the matrix elements of

appropriate quark and gluon operators within the nucleon

state. In this paper, we present the first lattice calculation of

the contribution of the intrinsic spin of the quarks to the

proton spin with high-statistics and control over systematic

errors. Our result,
P

q¼u;d;s
1

2
Δq ¼ 0.143ð31Þð36Þ, is in

good agreement with the COMPASS analysis 0.13 <
1

2
ΔΣ < 0.18 at 3 GeV2 [2]. Note that, above 3 GeV2,

the change of the axial charges with scale is negligible.

To calculate the nucleon spin using lattice QCD, one

starts with Ji’s sum rule [3] that provides a gauge invariant

decomposition of the nucleon’s total spin as

1

2
¼

X

q¼u;d;s;c;·

�

1

2
Δqþ Lq

�

þ Jg ð1Þ

where Δq≡ ΔΣq ≡ h1i
Δqþ ≡ g

q
A is the contribution of the

intrinsic spin of a quark with flavor q; Lq is the orbital

angular momentum of that quark; and Jg is the total

angular momentum of the gluons. Thus, to explain the

spin of the proton starting from QCD, one needs to

calculate the contributions of all three terms. In this paper

we present results for the relatively better determined first

term, 1

2
ΔΣ≡

P

q¼u;d;s
1

2
Δq.

On the lattice, the axial charge g
q
A is given by the matrix

element of the flavor diagonal axial current, q̄γμγ5q,

*
hwlin@pa.msu.edu

†
rajan@lanl.gov

‡
boram@lanl.gov

§
ypj@bnl.gov

∥
tanmoy@lanl.gov

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP

3
.

PHYSICAL REVIEW D 98, 094512 (2018)

2470-0010=2018=98(9)=094512(8) 094512-1 Published by the American Physical Society



g
q
AūNγμγ5uN ¼ hNjZAq̄γμγ5qjNi; ð2Þ

where ZA is the renormalization constant and uN is the

neutron spinor. In addition to quantifying the contribution

of the quarks to the nucleon spin,

g
q
A ≡ Δq ¼

Z

1

0

dxðΔqðxÞ þ Δq̄ðxÞÞ ð3Þ

is also the first Mellin moment of the polarized parton

distribution function (PDF) integrated over the momentum

fraction x [4]. The charges, gu;d;sA , also quantify the strength

of the spin-dependent interaction of dark matter with

nucleons [5,6]. Of these, Δs is the least well known and

current analyses [4] often rely on assumptions such as

SU(3) symmetry and Δs ¼ Δs̄.

II. LATTICE METHODOLOGY

The calculation of the flavor diagonal charges g
q
A is now

mature [7,8]. The challenge is to obtain high-statistics

results for both the connected and disconnected contribu-

tions to nucleon three-point functions illustrated in Fig. 1

and then address the various systematics. An important

finding of this work is that the lattice discretization errors

and the chiral corrections are large; consequently, the

evaluation of the renormalized charges at the physical pion

mass, M
π
0 ¼ 135 MeV, and the extrapolation to the

continuum limit are essential, as discussed in Sec. V.

The calculations of the connected and disconne-

cted contributions to gu;dA were done separately using

2þ 1þ 1-flavor ensembles of HISQ fermions [9] gener-

ated by the MILC Collaboration [10]. The construction of

the two- and three-point correlation functions used in the

analysis was carried out using Wilson-clover fermions. We

refer to this as the clover-on-HISQ lattice formulation,

which in the continuum limit is expected to give results

for QCD. All results presented here are for degenerate u
and d quarks, with the s and c quark masses tuned to their

physical values.

Results for the connected contributions have been

obtained using 11 HISQ ensembles that cover the range

0.06≲ a≲ 0.15 fm in the lattice spacing, 135≲Mπ ≲
320 MeV in the pion mass, and 3.3≲MπL≲ 5.5 in the

spatial lattice size expressed in terms ofMπL. The analysis
of the connected contributions, including the simultaneous

chiral-continuum-finite-volume (CCFV) fits, has been pre-

sented in Ref. [8], and the final results are

gu−dA ¼ 1.218ð25Þð30Þ;

guAjconn ¼ 0.895ð21Þ;

gdAjconn ¼ −0.320ð12Þ: ð4Þ

The second error in gu−dA represents an estimate of the

uncertainty due to using the leading order corrections in the

CCFV fit ansatz.

The computationally expensive calculations of the dis-

connected contributions has been carried out on six (for

light u and d quark contributions) and seven (for strange

quark) HISQ ensembles, as described in Table I. The

calculation of the vacuum polarization loop with the current

insertion in the disconnected diagram is carried out

stochastically using Gaussian or Z4 random sources on

each background gauge configuration, as described in

Ref. [7]. In this method, the final statistical error is a

combination of the error in the stochastic evaluation on

each configuration and the error due to the average over the

gauge configurations required by the path integral.

To increase the statistics in a cost-effective manner, the

calculations of both the two- and three-point nucleon

correlation functions were carried out using the truncated

solver method with bias correction [11,12]. In this method,

correlation functions are constructed using quark propa-

gators inverted with low precision (LP) stopping criteria

between rLP ≡ jresiduejLP=jsourcej ¼ 10−3 and 5 × 10−4

and high precision (HP) with rHP between 10−7 and 10−8

[7,8]. The bias corrected correlation functions on each

configuration are given by

Cimp ¼
X

NLP

i¼1

CLPðx
LP
i Þ

NLP

þ
X

NHP

i¼1

�

CHPðx
HP
i Þ − CLPðx

HP
i Þ

NHP

�

;

where CLP and CHP are the two- or three-point functions

calculated in LP and HP, respectively, and xLPi and xHPi are

the source positions for the two kinds of propagator

inversion. The bias was found to be smaller than the

statistical errors in all cases.

III. EXCITED-STATE CONTAMINATION

To obtain the nucleon charges, we need to evaluate the

matrix elements of the corresponding quark bilinear oper-

ators within the ground state of the nucleons. We use the

same toolkit to remove the excited-state contamination

(ESC) that is described in Refs. [7,8]: three-state (two-state)

fits to data for the connected (disconnected) three-point

functions as a function of both the operator insertion time t
and multiple source-sink separation τ. The overlap with the

FIG. 1. The connected (left) and disconnected (right) three-

point diagrams that contribute to the flavor diagonal matrix

elements of the axial operator (labeled by⊗ at time slice t) within
the nucleon state. The black blobs denote nucleon source and

sink, separated by Euclidean time τ.
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ground state is increased by using Gaussian smeared

sources for propagator calculation. The root-mean-square

smearing radius is tuned to be between 0.6 and 0.7 fm.

All correlation functions are constructed using these

propagators smeared at the source and the sink. The

masses and amplitudes of the states are extracted from

the two-point functions constructed using four-state fits.

The details of these analyses have already been published

in Ref. [8].

The data and the two-state fits for the disconnected

contributions are shown in Fig. 2. The data are noisier

compared to the connected part analyzed in Ref. [8].

Because of the weaker statistical signal, the two-state fits

to the three-point function are, in some cases, more

TABLE I. Lattice parameters of the seven ensembles analyzed for the disconnected contributions. This table gives the number of

configurations analyzed for the light (Nl
conf ) and strange (N

s
conf) quarks, the number of random sources (Nsrc), and the ratio NLP=NHP of

LP to HP solves used to estimate the quark loop on each configuration. The parameters of the 11 ensembles used for the connected

contribution are given in Table 1 of Ref. [8].

Ensemble ID a (fm) Mπ (MeV) L3 × T MπL Nl
conf Nl

src Ns
conf Ns

src NLP=NHP

a15m310 0.1510(20) 320(5) 163 × 48 3.93 1917 2000 1919 2000 50

a12m310 0.1207(11) 310(3) 243 × 64 4.55 1013 5000 1013 1500 30

a12m220 0.1184(10) 228(2) 323 × 64 4.38 958 11000 958 4000 30

a09m310 0.0888(08) 313(3) 323 × 96 4.51 1081 4000 1081 2000 30

a09m220 0.0872(07) 226(2) 483 × 96 4.79 712 8000 847 10000 30=50

a09m130 0.0871(06) 138(1) 643 × 96 3.90 877 10000 50

a06m310 0.0582(04) 320(2) 483 × 144 4.52 830 4000 200þ 340 5000þ 10000 50
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FIG. 2. The data and the two-state fit to the light (top two rows) and strange (bottom two rows) quark disconnected contribution to the

bare g
ðl;sÞ;disc
A . The grey error band and the solid line within it is the τ → ∞ estimate obtained using the two-state fit to data at different t

and τ. The result of the fit for each individual τ is shown by a solid line in the same color as the data points.
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weighted towards smaller values of the source-sink sepa-

ration τ. Also, in many cases there is no clear pattern of

convergence towards the τ → ∞ value. We, therefore, first

determined the direction of convergence versus τ for both

glA and gsA by analyzing data at small τ that have smaller

statistical errors but larger ESC. We then take the largest

range of τ, shown in Fig. 2, for which the errors are

reasonable and the entries in the covariance matrix used in

the two-state fits are stable under variation in the set of

values of t and τ used. Because of the difference in the

quality of the statistical signal, and because the number

of ensembles and configurations analyzed are not the

same, we carry out separate analyses of the connected

and disconnected contributions.

Analyzing the connected and disconnected contributions

separately to remove ESC introduces an approximation. To

define connected and disconnected contributions individu-

ally, one has to work in a partially quenched theory with an

additional quark with flavor u0. However, in this theory, the
Pauli exclusion principle does not apply between the u and

u0 quarks. The upshot of this is that the spectrum of states in

the partially quenched theory is larger; for example, an

intermediate u0ud state would be the analogue of a Λ rather

than a nucleon [13]. Thus, the spectral decomposition for

this partially quenched theory and QCD is different. In the

ESC fits, we however use the same QCD spectral decom-

position in the fits for both the two- and three-point

functions, whereas one should be using the partially

quenched spectrum for the three-point function. The size

of the extrapolation under consideration is the difference

between the value at t ¼ τ=2 for the largest τ and the

asymptotic value, whose estimate is the grey band. Since

this difference should converge exponentially as τ → ∞

and is observed to be small (< 0.02), as shown in Fig. 2, we

assume that any additional systematic in the extrapolation

due to not using the partially quenched spectrum is well

within the quoted uncertainty. We have also found that in

the fits to both connected and disconnected contributions,

the extrapolated value is not very sensitive to the precise

values of the amplitudes and masses used, i.e., whether they

are taken from three- or four-state fits to the two-point

functions.

In the fits to remove ESC, we underscore the observation

that the disconnected contribution converges from above,

while the connected contribution converges from below as

shown in Ref. [8]; i.e., the ESC in the disconnected three-

point function is opposite to that observed in the connected

three-point function. In both cases, removing the ESC

increases the magnitude of their contribution, with the

disconnected contribution becoming more negative. Note

that such an increase in the negative contribution from the

sea quarks reduces the fraction of the nucleon spin carried

by the quarks.

The final results for the bare values of the light (u, d),

gl;bareA , and strange quarks, gs;bareA , obtained from the two-

state fits are collected together in Table II.

IV. RENORMALIZATION OF THE OPERATORS

The renormalization of flavor diagonal light quark

operators, q̄γμγ5q, requires knowing both nonsinglet and

singlet factors [14]. In this work, we neglect the difference

between the two and renormalize all charges using Zisovector
A

calculated in the regularization-independent symmetric

momentum-subtraction (RI-sMOM) scheme and converted

to the MS scheme at 2 GeV using two-loop perturbation

theory. These results are given in Ref. [8]. In perturbation

theory, the difference between the two starts at two loops is

shown in Ref. [15]; however, the numerical value is small,

Oð0.01Þ. Explicit nonperturbative calculations find that

Z
nonsinglet
A and Z

singlet
A agree to within a percent for the

twisted mass and the clover-Wilson actions [16–18]. While

we have not checked that the difference is similarly small

also for our clover-on-HISQ calculation, we assume it is

TABLE II. The bare and renormalized charges from the different ensembles are given along with the values after extrapolation to

a ¼ 0 and Mπ ¼ 135 MeV. The charges, renormalized at 2 GeV in the MS scheme in the two ways defined in Eq. (5), are given in

columns 4–7. In all cases, the numbers within the square brackets are the χ
2=DOF of the fits. In the ESC fits for extracting the bare

charges, shown in Fig. 2, the χ2=DOF with DOF ≈ 20 is given in columns 2–3. In the chiral-continuum fits, using Eq. (6) and shown in

Fig. 3, the χ
2=DOF with DOF ¼ 3 (light) or 4 (strange) is given in the last row.

ID gl;bareA gs;bareA glAjR1 gsAjR1 glAjR2 gsAjR2

a15m310 −0.045ð4Þ[0.9] −0.024ð2Þ[1.2] −0.044ð4Þ −0.023ð2Þ −0.045ð4Þ −0.024ð2Þ

a12m310 −0.053ð5Þ[1.2] −0.027ð3Þ[1.1] −0.051ð5Þ −0.025ð3Þ −0.052ð4Þ −0.026ð3Þ
a12m220 −0.079ð9Þ[0.8] −0.039ð6Þ[0.7] −0.075ð9Þ −0.037ð6Þ −0.077ð9Þ −0.038ð6Þ

a09m310 −0.056ð6Þ[0.8] −0.033ð5Þ[0.9] −0.053ð6Þ −0.031ð5Þ −0.056ð6Þ −0.033ð5Þ
a09m220 −0.086ð9Þ[1.3] −0.040ð6Þ[1.3] −0.082ð9Þ −0.038ð6Þ −0.085ð9Þ −0.039ð6Þ
a09m130 −0.048ð28Þ[1.3] −0.046ð27Þ −0.047ð27Þ

a06m310 −0.068ð9Þ[0.8] −0.027ð10Þ[1.3] −0.066ð9Þ −0.026ð10Þ −0.068ð9Þ −0.027ð10Þ

Extrapolated −0.115ð13Þ [0.28] −0.052ð8Þ [0.17] −0.120ð14Þ [0.20] −0.054ð8Þ [0.21]
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covered by the Oð0.03Þ uncertainty in the calculated

values of Zisovector
A ≡ Zu−d

A used. In short, both the dis-

connected and connected contributions are renormalized in

the following two ways:

gAjR1 ¼ gA × Zisovector
A ;

gAjR2 ¼
gA

gu−dV

×
Zisovector
A

Zu−d
V

; ð5Þ

with the values of Zisovector
A and Zu−d

V taken from Ref. [8]. In

the second method, the conserved vector current relation

gu−dV × Zu−d
V ¼ 1 is implicit. The final values are taken to be

the average of the two after performing the chiral-continuum

extrapolation. The results for disconnected contributions are

given in Table II and the connected contributions, taken from

Ref. [8], are reproduced in Eq. (4).

V. THE CONTINUUM-CHIRAL EXTRAPOLATION

The leading discretization effects are taken to be linear in

a since the action and the operators in our clover-on-HISQ

formalism are not fullyOðaÞ improved. We take the leading

dependence on Mπ from the finite volume chiral perturba-

tion theory [19–25], which is proportional to M2
π . We

neglect finite volume corrections since no significant

evidence for them was found in the dominant connected

contributions [8]. In Fig. 3, we show the simultaneous

chiral-continuum fits (pink band) versus a and M2
π to the

renormalized disconnected data gl;sA given in Table II using

the ansatz,

gl;sA ða;Mπ; LÞ ¼ c1 þ c2aþ c3M
2
π: ð6Þ

The results of the extrapolated values from the fits for both

renormalization procedures are also given in Table II along

with the χ
2=DOF. For comparison, the grey band within

dotted lines in Fig. 3 is the fit to a single variable M2
π , i.e.,

with c2 ¼ 0. The difference between the two bands high-

lights the need for the simultaneous fit.

The results for the fit parameters ci for the light and

strange quarks are given in Table III. From the fits shown in

Fig. 3, it is clear that, even with the limited number of data

points, the signal is good enough to give a statistically

significant determination of the ci, and show that the

variation is essentially linear in the two variables. The

change in ci going from the light to the strange quark is also

clear from the data and the fits.

We also carried out fits including the next order

corrections, a2 for the discretization errors and

M2
π logM

2
π for the chiral log term, one at a time. In each

case, the errors in the coefficients and in the results grow.

For example, in the best case of adding the a2 term as there

are data at four values of a, we get glAjR2 ¼ −0.147ð43Þ,
and the coefficients c2 ¼ 0.67ð71Þ and ca2 ¼ −2.1ð3.2Þ.
The χ

2 ¼ 0.6 of the fit using Eq. (6), which was already

unreasonably small, decreased to 0.3. There was no scope

to reduce χ
2 by two units as is required by the Akaike

information criteria [26] to warrant including additional

terms. In fact, as is obvious, such statistical tests are

meaningless for such small χ2 values. More importantly,

within the range of the data, c2 and ca2 compete to reduce

χ
2 but both are poorly determined. Outside, the predictive

power of the fit deteriorates as is typical of overparame-

trized fits. Our conclusion is that the ansatz given in Eq. (6)

is sufficient to fit the current data and many more data
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FIG. 3. Top: The extrapolation of the renormalized gl;discA and gs;discA data using the chiral-continuum ansatz given in Eq. (6). In each

panel, the pink band shows the result of the simultaneous fit plotted versus a single variable with the other variable set to its physical

value. The result at the physical point,Mπ ¼ 135 MeV and a ¼ 0, is marked with a red star. The grey band shows the fit versus onlyMπ,

i.e., ignoring the dependence on a. It highlights the need for a simultaneous fit in both a and Mπ . Bottom: The data in each panel are

plotted after extrapolation to the physical point (a ¼ 0 or Mπ ¼ 135 MeV) in the nonplotted variable to facilitate comparison with the

simultaneous fit.
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points are needed to explore additional corrections.

Unfortunately, the analysis of the remaining HISQ ensem-

bles at smaller a, and those at the physical pion mass, has

not yet been possible due to the computational cost. Our

final results are, therefore, derived from fits using Eq. (6).

To account for the uncertainty in the fit model, we assign an

additional systematic error of 0.03, coming from the

connected contributions, in guA and gdA.

Results for the individual contributions are collected

together in Table IV, along with the connected contribu-

tions reproduced from Ref. [8]. Their sum 1

2
ΔΣ≡

P

q¼u;d;s
1

2
Δq ¼ 0.143ð31Þ is in good agreement with the

COMPASS result [2]. Scaling our value of gsA by 1=mq

suggests that the neglected charm contribution could be

gcA ≈ −0.005.

Our result gu−dA ¼ 1.218ð27Þð30Þ for the isovector

axial charge is 0.058 below the experimental value

gu−dA ¼ 1.2766ð20Þ, as discussed in Ref. [8]. The difference
can be explained if the connected guA is underestimated by

0.058 or gdA is more negative by this amount or any

combination of the two. (The disconnected contributions

cancel in gu−dA .) In the first case, ΔΣ=2 would increase by

0.029, and in the second case decrease by the same amount.

The most likely reason for this underestimate is the

uncertainty in the chiral-continuum-finite-volume extrapo-

lation, which was estimated to be 0.03 in Ref. [8],

independent of the experimental value. This systematic

uncertainty has been added as a second error in guA and gdA.

In the fits to the disconnected data shown in Fig. 3, we do

not find large deviations from linearity. The quoted error is

comparable to the change, ≈0.02, between the lowest Mπ

and a point and the extrapolated value (red star), and

thus a conservative estimate of possible residual uncertainty.

Another estimate of the same systematic, a2Λ2

QCD ≈ 0.02,

gives a similar value. We do include 0.02, as an additional

systematic for the sum of the disconnected contributions;

combine it in quadrature with that from the connected

contribution; and quote an overall second error of 0.036 in

ΔΣ=2 ¼ 0.143ð31Þð36Þ. This represents the model uncer-

tainty of the chiral-continuum ansatz, i.e., using the lowest

order corrections and fitting to a limited number of data

points.

VI. COMPARISON WITH PREVIOUS WORK

AND CONCLUSIONS

In Fig. 4, we compare lattice results, restricted to

publications including physical mass ensembles, with the

moments extracted from global fits to the polarized PDFs

reviewed in Ref. [4]. Within errors, our results are com-

patible with the moments extracted from global PDF fits, all

expressed in the MS scheme at 2 GeV. The ETMC lattice

results from a single physical mass two-flavor ensemble at

a ¼ 0.093 fm [17,27] are also consistent with ours. The

small difference can be accounted for by the a dependence

highlighted in our disconnected contribution data shown in

Fig. 3, i.e., to get continuum limit values assuming similar

TABLE III. The values of the parameters ci, defined in Eq. (6),

for the final fits shown in Fig. 3 and the results given in Table II.

glAjR1 gsAjR1 glAjR2 gsAjR2

c1 −0.124ð15Þ −0.056ð9Þ −0.129ð15Þ −0.058ð9Þ
c2 (fm−1) 0.193(89) 0.073(65) 0.207(88) 0.084(65)

c3 (GeV−2) 0.52(15) 0.21(10) 0.53(15) 0.22(10)

χ
2=DOF 0.281 0.167 0.203 0.205

TABLE IV. Our results for the u, d, and s quarks, after

extrapolation to a ¼ 0 and Mπ ¼ 135 MeV, for the connected

and disconnected contributions and their sum are given in the first

three rows. The sum over flavors gives ΔΣ ¼ Δuþ Δdþ Δs ¼
0.286ð62Þ. ETMC results at the single lattice spacing a ¼
0.0938 fm [17] are given in the last row.

guA ≡ Δu gdA ≡ Δd gsA ≡ Δs

Connected 0.895(21)(30) −0.320ð12Þð30Þ
Disconnected −0.118ð14Þ −0.118ð14Þ −0.053ð8Þ
Sum 0.777(25)(30) −0.438ð18Þð30Þ −0.053ð8Þ

ETMC 0.830(26) −0.386ð18Þ −0.042ð10Þð2Þ

FIG. 4. Chiral-continuum extrapolated PNDME’18 results (this work) for Δu, Δd, and Δs are compared with ETMC [17,27] values

obtained at a single-lattice spacing and with moments from global fits to polarized PDF (NNPDFpol1.1’13 [28], DSSV’08 [29,30],

Jam’15 [31], and JAM’17 [32]). All PDF results are taken from Ref. [4] and are at 2 GeV in the MS scheme.
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discretization errors, our fits indicate subtracting 0.04 from

their guA and gdA and 0.01 from gsA. The change in the

connected contributions to guA and gdA is only Oð0.01Þ [8].
Most likely, this is because the ETMC value for the

isovector charge gu−dA ¼ 1.212ð40Þ is equally low. The

difference in the two respective error estimates is mainly

due to ETMC not including a systematic uncertainty to

account for possible discretization effects in the connected

and disconnected contributions, and therefore in ΔΣ.

In conclusion, we present first results with chiral-

continuum extrapolation of up, down, and strange quark

spin contributions. These fits are based on 6 (7) ensembles

for the disconnected contribution of light (strange) quarks,

and on 11 ensembles for the dominant connected contri-

butions that were analyzed fully in Ref. [8]. We demon-

strate in Fig. 3 that a chiral-continuum extrapolation

significantly reduces the disconnected contribution of the

quark spin to the proton spin and is, therefore, essential for

getting physical results from lattice calculations. Our final

result, 1

2
ΔΣ ¼ 0.143ð31Þð36Þ, is consistent with the 2015

COMPASS analysis. Including more ensembles in the

calculation of the disconnected contribution and resolving

the ≈5% underestimate of gu−dA that impacts the connected

contributions are, at present, the largest systematics that

need to be addressed in future works.
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